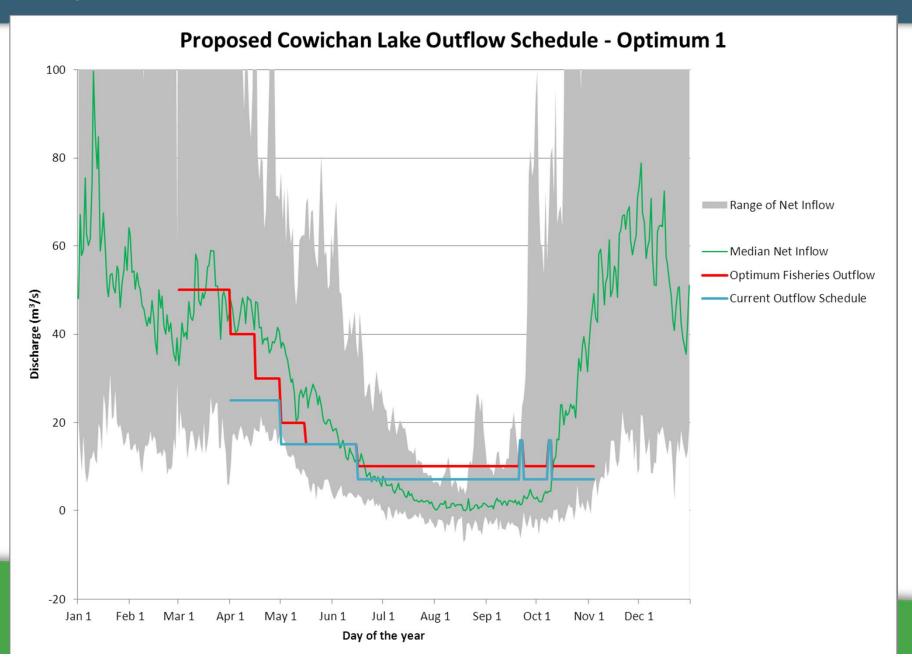


Cowichan Lake Storage Assessment – 2015 Final Results Craig Sutherland, M.Sc., P.Eng. July 27, 2015

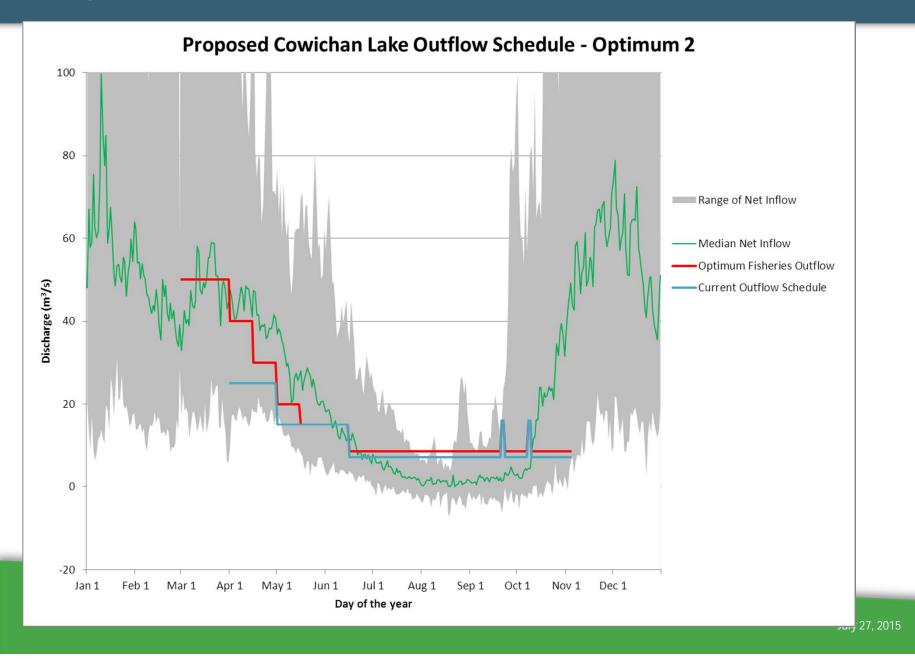
- 1. Establish a set of 'optimum' flow release schedules to test reliability of Cowichan Lake storage.
- 2. Develop inflow scenarios for both current (1985 to 2014) and future (2050s) climate conditions
- 3. Test reliability of increase storage of raising weir from 0.3 m up to 0.9 m under both inflow scenarios.
- 4. Refine 'optimum" flow release until fish flows balance with limits of increased weir height.
- 5. Outline next steps.



Outflow Schedules – Discharge m³/s

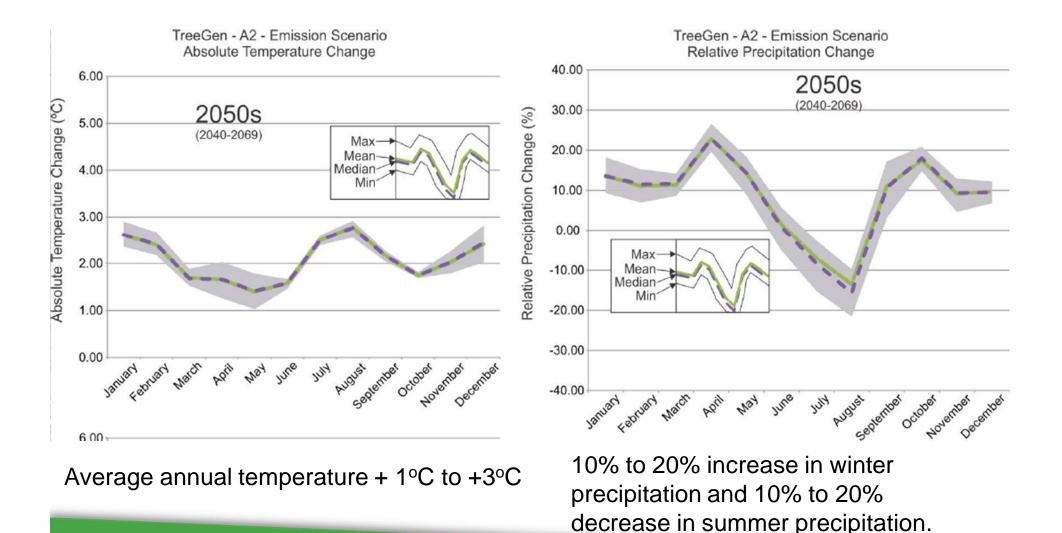

Period	Existing	Preferred	Optimum 1	Optimum 2
March	-	50	50	50
April 1 to 15	25	45	40	40
April 16 to 30	25	30	30	30
May 1 to 15	15	25	20	20
May 16 to 31	15	25	20	20
June 1 to 15	15	20	15	15
June 15 to 30	7	15	15	15
July 1 to Aug 31	7	10	10	8.5
Sept 1 to 30	7	16	10	8.5
Oct 1 to 30	7	20	10	8.5

Discharge in Cowichan River immediately downstream of Cowichan Lake All schedules include two fish pulses of 16 m³/s for 48 hr late Sept and early Oct. Preferred and Optimum Flows are not considered final but were developed to test reliability of storage over a range of outflow. They consider only fish/conservation benefits.

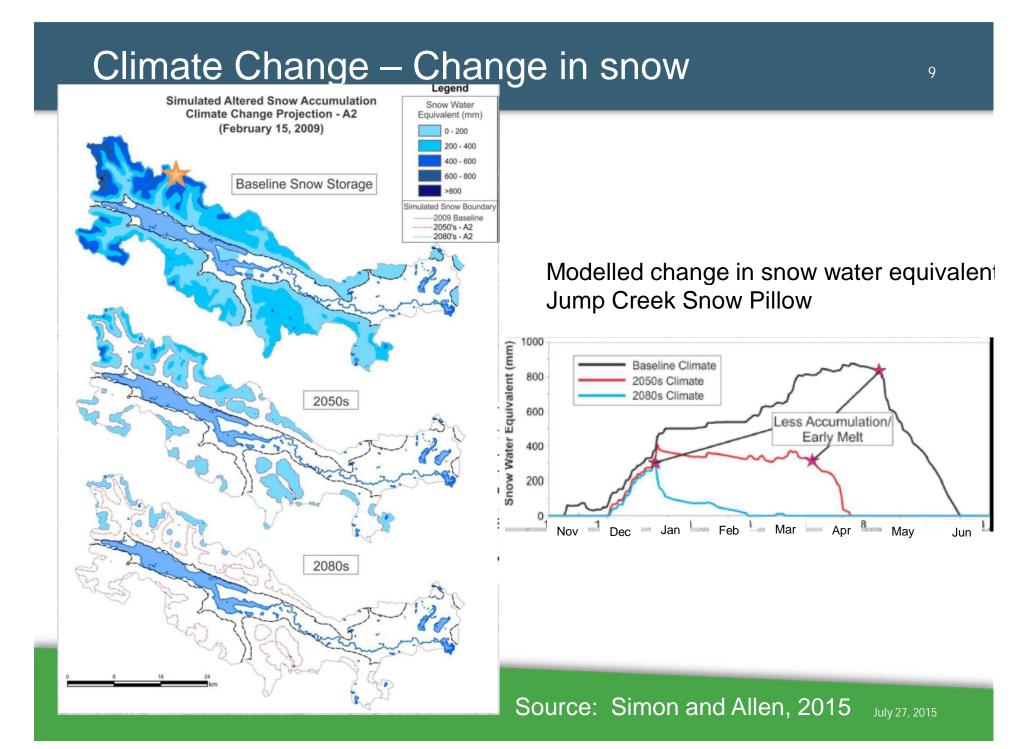

Preferred Outflow Schedule

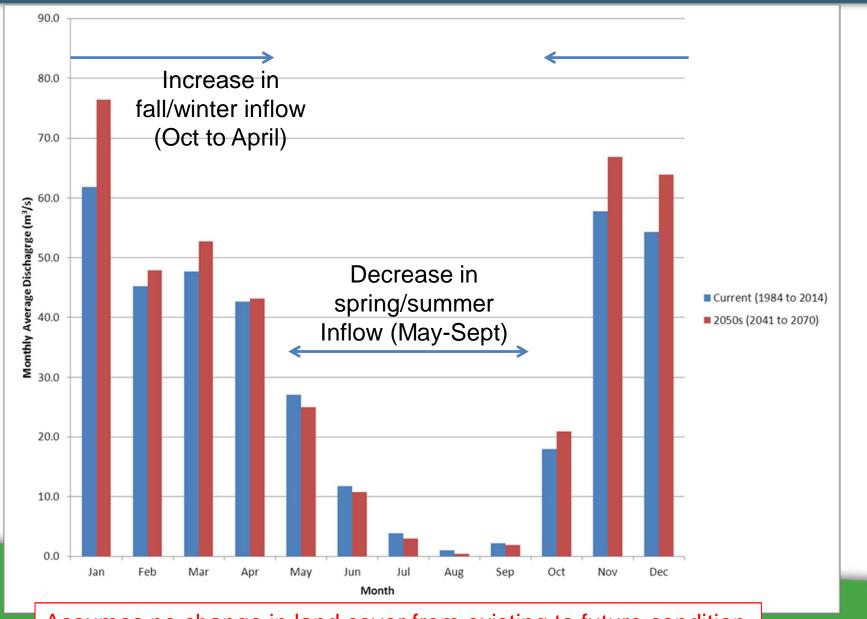
Optimum 1 – Outflow Schedule

Optimum 2 – Outflow Schedule



Climate Change


- 1. Future period 2050s (2041 to 2070)
- Average annual temperature + 1°C to +3°C
 10% to 20% increase in winter precipitation and
 20% decrease in summer precipitation.
- 3. IPCC SRES A2 Greenhouse Gas Scenario "worst case" global emissions scenario.
- 4. Change in lake inflow hydrologic/groundwater model developed by Simon Foster/Diana Allen – SFU


Climate Change – Change in Precipitation/Temp

Source: Simon and Allen, 2015 July 27, 2015

Current vs Future – Change in Inflow

Assumes no change in land cover from existing to future condition

Results – Existing Outflow Schedule (7 m³/s summer baseflow)

Approx. Increased		Number of Years WL below ZSL (out of 30 years)		Fish Pulse Does not Occur at least once (out of 30 years)	
Raise weir by (m):	storage volume (million m ³)	Current Climate (1985-2014)	Future Climate (2050s)	Current Climate (1985-2014)	Future Climate (2050s)
0.9	56	< 1	<1	3 (10%)	5 (17%)
0.75	47	< 1	<1	3 (10%)	5 (17%)
0.6	37	< 1	<1	4 (13%)	8 (27%)
0.45	28	< 1	4 (13%)	5 (17%)	10 (33%)
0.3	19	7 (23%)	9 (30%)	8 (27%)	10 (33%)
0	0	9 (30%)	11 (37%)	13 (43%)	17 (57%)

July 27, 2015

Results – Optimum 1 Flow Release (10 m³/s summer baseflow)

	Approx. Increased	Number of Years WL below ZSL (out of 30 years)		Fish Pulse Does not Occur at least once (out of 30 years)	
Raise weir by (m):	storage volume (million m ³)	Current Climate (1985-2014)	Future Climate (2050s)	Current Climate (1985-2014)	Future Climate (2050s)
0.9	56	7 (23%)	6 (20%)	8 (27%)	13 (43%)
0.75	47	8 (27%)	8 (27%)	12 (40%)	15 (50%)
0.6	37	12 (40%)	13 (43%)	15 (50%)	18 (60%)
0.45	28	16 (53%)	16 (53%)	17 (57%)	21 (70%)
0.3	19	17 (57%)	16 (53%)	22 (73%)	23 (77%)

Results – Optimum 2 Flow Release (8.5 m³/s summer baseflow)

Approx. Increased		Number of Years WL below ZSL (out of 30 years)		Fish Pulse Does not Occur at least once (out of 30 years)	
Raise weir by (m):	storage volume (million m ³)	Current Climate (1985-2014)	Future Climate (2050s)	Current Climate (1985-2014)	Future Climate (2050s)
0.9	56	5 (17%)	5 (17%)	6 (20%)	7 (23%)
0.75	47	6 (20%)	5 (17%)	7 (23%)	9 (30%)
0.6	37	8 (27%)	7 (23%)	9 (30%)	13 (43%)
0.45	28	9 (30%)	11 (37%)	11 (37%)	14 (47%)
0.3	19	14 (47%)	12 (40%)	14 (47%)	16 (53%)

Next steps

Future Assignment

- 1. Assess change in lake levels as a result of raising weir
- 2. Review effects of lake level changes on private properties, riparian vegetation, recreation, etc.
- 3. Compare effects of raising weir with increased reliability of flow release.
- 4. Agree on and recommend fish/conservation flow target
- Agree on and recommend weir crest elevation to move forward with detailed planning and design.

June 29, 2015