

Improving Water Management for BC Agriculture

Ted van der Gulik, P.Eng. Senior Engineer

B.C. Ministry of Agriculture and Lands Sustainable Agriculture Management Branch

"The water resources of the Okanagan will be totally allocated in less than 10 years."

"To move toward sustainable water management...requires changes in practices now."

Okanagan Water Use

Over 85% is Used for Outdoor Purposes: ~60 - 70% for Agricultural Irrigation >15% for Turf Irrigation Saving water requires "on the ground" action

Why Develop a Model

- Agricultural irrigation is the largest water user in many basins in British Columbia
- Agriculture is a consumptive user, unlike other sectors
- Competition between urban, fisheries, recreation and agriculture for water will increase
- Climate change will drive the need to be more efficient

Irrigation Demand Model

Model calculates:

- Farm irrigation water use
- Landscape irrigation water use
- Golf course irrigation water use

Irrigation Demand Model

Objective:

Develop a model that calculates agriculture's irrigation needs by purveyor, municipality, district and subwatershed.

Methodology: Determine Property-by-Property water use

Result:

Planning Tools that secure water for current and future agricultural needs

Okanagan **Example area** Watershed Kelowna Using Spatial Data for Agricultural Modeling in the Okanagan Valley South Okanagan

Unified Cadastre

The Okanagan Basin developed area is divided into 398 map sheets

Land Use Data

Map sheets were developed using GIS and aerial photography. Cadastre and land use polygons were added by technicians.

Land Use Data

The GIS data was verified by a windshield survey of every property

Land Use Data

Data was entered into the database in the field. Where polygon changes were required notes are made on the map sheet and sent back to the GIS technician for updating

Land Use Polygons

Okanagan C and Agricultural	adas) Land	tre Use		
Map Sheet : Year of Ortho : Plot Number : 45	1357 2004	7-082L.02 Plot Date :	24 Aug 18,	, 2006
ALR Okanagan Waters	hed	Land Use	LandUse ID Parcel ID	145365 19064
Scale 1:5000	Projec	ction : UTM	Zone 11	NAD83
0 50	100	150	200	250 m

- 1. Microsprinkler on peaches
- 2. Microsprinkler on cherries
- 3. Microsprinkler on pears
- 4. Drip on pears
- 5. Residential
- 6. Bee hives

Land Use

Crop Type:

Apple

Pasture

VIZ.

Irrigation System Type:

Sprinkler

Drip

Soil Boundary

There are 130,000 polygons generated for the Okanagan in the farming areas

Cadastre Land and Crop Polygon Soil Boundary

Climate Data

Crop Coefficient

- **_ _ _** Apples
- ––– Alfalfa

Algorithm calculates water demand from:

- ETo calculated daily from climate data.
- Climate data to determine start and end of growing season.
- Crop coefficients to adjust daily Eto
- Soil and rooting depth information to calculate soil water storage, percolation rates and determine soil factors
- Irrigation system efficiencies

Results by Crop

Crop Group	Irrigated Area (ha)	Irrigation Demand (mm)
Apple	4,292	693
Berry	62	633
Cherry	1,121	733
Forage	8,520	755
Fruit	898	793
Golf	1,048	992
Grape	2,734	413
Landscape Turf	126	1,009
Nursery	385	909
Turf Farm	120	959
Vegetables	531	692
Total =	20,033	704

Results by Irrigation System

Irrigation System	Irrigated Area (ha)	Irrigation Demand (mm)
Drip	1,490	415
Golfsprinkler	1,045	992
Gun	308	1,118
Handline	1,390	792
Landscape Sprinkler	383	674
Microspray	466	661
Microsprinkler	1,548	674
Overtree Drip	220	447
Overtree Microsprinkler	16	737
Pivot	555	536
Pivot – Low Pressure	20	543
SDI	42	548
Sprinkler	3,602	739
Solid Set Gun	12	772
Solid Set Over tree	3,073	604
Solid Set Sprinkler	134	709
Solid Set Undertree	1,790	791
Travelling gun	2,079	751
Wheelline	1,661	751
Total =	20,033	704

Results by Water Source

Water Source	Irrigated Area (ha)	Irrigation Demand (m ³)
Water License	1,672	11,455,582
Water Purveyor	14,966	107,930,320
Groundwater	3,394	21,695,142
Total	20,033	141,081,043

Assuming good management

Steps to Improving Irrigation Management

- Efficiency: select the most efficient system possible
- **Uniformity:** design the system to achieve the best uniformity
- Scheduling: apply irrigation to match crop and soil conditions

Irrigation Scheduling Techniques

1. Soil Moisture Monitoring

2. Climate Monitoring

Soil Moisture Monitoring

Electrical Resistance Block Watermark

igure 7.1 Soil Moisture Tension and Available Water

When To Irrigate?

An irrigation system in a sandy loam soil with a root depth of 1 m. Is scheduled to begin irrigation when the available water has been depleted by 50% Irrigation should start when the sensor Reaches 40 centibars

Climate Monitoring

www.irrigationbc.com

Links »

→ Go

Y

Address 🗃 http://hblanarc.ca/IrrigationCalc/main.html

Agricultural Irrigation SCHEDULING CALCULATOR

Returning Users

Is this your first visit to the Calculator?

This Irrigation Scheduling Calculator uses real-time daily evapotranspiration (ET) rates determined from climate stations that are linked to www.Farmwest.com. All Farmwest stations are located within British Columbia.

For case studies outside BC, the Calculator allows users to input local ET data that reflects the climate conditions at their specific location.

Register New Account

Also Available:

Landscape Irrigation Scheduling Calculator

User Guide

El Done

3. Background Science

🖹 🛃 🏠 🔎 Search 👷 Favorites 🚱 🔗 🛪 🏝 📨 📲

5. Questions and Answers

Internet

The calculator links to climate stations on www.Farmwest.com

Managing Agricultural Water Use

Meters provide a tool to help manage water

Ag Water Demand Model can be used to assess water use through OKIM (Okanagan Irrigation Management program)

There are six water purveyors that are now metering agricultural connections

Objective of OKIM

- Improve Water Demand Side Management for irrigation customers by comparing and analyzing:
 - Existing consumption (Obtain from Meter readings)

- Anticipated demand (Calculated by the AWDM)

